Brazilian Journal of Pulmonology

ISSN (on-line): 1806-3756 | ISSN (printed): 1806-3713

SBPT

Publication continuous and bimonthly

SCImago Journal & Country Rank
Advanced Search

 

Current Issue: 2018 - Volume 44 - Number 1 (January/February)

CONTINUING EDUCATION : SCIENTIFIC METHODOLOGY

Understanding diagnostic tests. Part 3.

Entendendo os testes diagnósticos. Parte 3.

 

Juliana Carvalho Ferreira1; 2; a; Cecilia Maria Patino1; 3; b

 

1. Methods in Epidemiologic, Clinical, and Operations Research-MECOR-program, American Thoracic Society/Asociación Latinoamericana del Tórax, Montevideo, Uruguay.
2. Divisão de Pneumologia, Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil.
3. Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles (CA) USA.
a. http://orcid.org/0000-0001-6548-1384; b. http://orcid.org/0000-0001-5742-2157


 

 

 

In the previous articles from this series(1,2) we discussed important characteristics used in order to evaluate diagnostic tests: sensitivity, specificity, positive predictive value, and negative predictive value. In this final part, we discuss positive likelihood ratio (LR+), negative likelihood ratio (LR−), and ROC curves.

LIKELIHOOD RATIOS

LRs combine sensitivity and specificity to quantify how helpful a new diagnostic test is in changing (increasing or decreasing) the probability of having a disease compared with the prevalence of that disease (pretest probability) in the population studied. The LR+ of a test is the probability of a positive result in patients with the disease divided by the probability of a positive result in patients without the disease, whereas LR− is the probability of a negative result in patients with the disease divided by the probability of a negative result in patients without the disease. LR+ ranges from 1 to infinity, and an LR+ of 1 indicates that the probability of a positive test result is the same for patients with and without the disease; therefore, the test is useless. An LR+ greater than 1 supports the presence of the disease, and the greater LR+ is, the more a positive test result increases the probability of the disease when compared with the pretest probability. LR− ranges from 1 to 0, and the closer the LR is to 0, the lower the probability of the disease is if the test result is negative.

ROC CURVES

We use ROC curves to make a global assessment of the value of a diagnostic test by calculating the area under the curve (AUC). The values of the AUC can vary from 0 to 1.0, and values over 0.8 indicate that the diagnostic test has very good accuracy. The ROC curve plots sensitivity (true positives) against "1 − specificity" (false negatives) for all the possible cut-off values of the new test (Figure 1). As we have previously discussed, there is always a trade-off between sensitivity and specificity when we define a cut-off value for quantitative test results. If a new test were perfect, there would be a complete separation of values between patients with and without the disease, the cut-off value would be the lowest value among patients with disease, and the AUC would be 1. However, since there are no perfect tests, there will always be some false positive or some false negative results. The more accurate a test is, the greater the AUC is, which is the probability that a random person with the disease has a higher value of the measurement than a random person without the disease.(3)



MAKING SENSE OF DIAGNOSTIC TEST PERFORMANCE CHARACTERISTICS

If you are wondering which of the parameters described is more useful to evaluate a diagnostic test-sensitivity, specificity, LRs, or ROC curve-the answer is: it depends! Each parameter describes a specific characteristic of the test, and depending on how you will use the test, one or another may be more useful. Now that you understand these concepts, interpreting a test result will be much more than just looking at the result.

REFERENCES

1. Ferreira JC, Patino CM. Understanding diagnostic tests. Part 1. J Bras Pneumol. 2017;43(5):330. https://doi.org/10.1590/s1806-37562017000000330
2. Patino CM, Ferreira JC. Understanding diagnostic tests. Part 2. J Bras Pneumol. 2017;43(6):408. https://doi.org/10.1590/s1806-37562017000000424
3. Altman DG, Bland JM. Diagnostic tests 3: receiver operating characteristic plots. BMJ. 1994;309(6948):188. https://doi.org/10.1136/bmj.309.6948.188

 

 


The Brazilian Journal of Pulmonology is indexed in:

Latindex Lilacs SciELO PubMed ISI Scopus Copernicus pmc

Support

CNPq, Capes, Ministério da Educação, Ministério da Ciência e Tecnologia, Governo Federal, Brasil, País Rico é País sem Pobreza
Secretariat of the Brazilian Journal of Pulmonology
SCS Quadra 01, Bloco K, Salas 203/204 Ed. Denasa. CEP: 70.398-900 - Brasília - DF
Fone/fax: 0800 61 6218/ (55) (61) 3245 1030/ (55) (61) 3245 6218
E-mails: jbp@jbp.org.br
jpneumo@jornaldepneumologia.com.br

Copyright 2019 - Brazilian Thoracic Association

Logo GN1