Brazilian Journal of Pulmonology

ISSN (on-line): 1806-3756 | ISSN (printed): 1806-3713

SBPT

Publication continuous and bimonthly

SCImago Journal & Country Rank
Advanced Search

Search Results

The search for the author or contributors found : 4 results


Comparison of two experimental models of pulmonary hypertension

Comparação de dois modelos experimentais de hipertensão pulmonar

Igor Bastos Polônio, Milena Marques Pagliarelli Acencio, Rogério Pazetti, Francine Maria de Almeida, Mauro Canzian, Bárbara Soares da Silva, Karina Aparecida Bonifácio Pereira, Rogério de Souza

J Bras Pneumol.2012;38(4):452-460

Abstract PDF PT PDF EN Portuguese Text

Objective: To compare two models of pulmonary hypertension (monocrotaline and monocrotaline+pneumonectomy) regarding hemodynamic severity, structure of pulmonary arteries, inflammatory markers (IL-1 and PDGF), and 45-day survival. Methods: We used 80 Sprague-Dawley rats in two study protocols: structural analysis; and survival analysis. The rats were divided into four groups: control; monocrotaline (M), pneumonectomy (P), and monocrotaline+pneumonectomy (M+P). In the structural analysis protocol, 40 rats (10/group) were catheterized for the determination of hemodynamic variables, followed by euthanasia for the removal of heart and lung tissue. The right ventricle (RV) was dissected from the interventricular septum (IS), and the ratio between RV weight and the weight of the left ventricle (LV) plus IS (RV/LV+IS) was taken as the index of RV hypertrophy. In lung tissues, we performed histological analyses, as well as using ELISA to determine IL-1 and PDGF levels. In the survival protocol, 40 animals (10/group) were followed for 45 days. Results: The M and M+P rats developed pulmonary hypertension, whereas the control and P rats did not. The RV/LV+IS ratio was significantly higher in M+P rats than in M rats, as well as being significantly higher in M and M+P rats than in control and P rats. There were no significant differences between the M and M+P rats regarding the area of the medial layer of the pulmonary arteries; IL-1 and PDGF levels; or survival. Conclusions: On the basis of our results, we cannot conclude that the monocrotaline+pneumonectomy model is superior to the monocrotaline model.

 


Keywords: Monocrotaline; Hypertension, pulmonary; Pneumonectomy; Interleukin-1; Receptor, platelet-derived growth factor beta.

 


An experimental rat model of ex vivo lung perfusion for the assessment of lungs after prostacyclin administration: inhaled versus parenteral routes

Modelo experimental de perfusão pulmonar ex vivo em ratos: avaliação de desempenho de pulmões submetidos à administração de prostaciclina inalada versus parenteral

Paulo Francisco Guerreiro Cardoso, Rogério Pazetti, Henrique Takachi Moriya, Paulo Manuel Pêgo-Fernandes, Francine Maria de Almeida, Aristides Tadeu Correia, Karina Fechini, Fabio Biscegli Jatene

J Bras Pneumol.2011;37(5):589-597

Abstract PDF PT PDF EN Portuguese Text

Objective: To present a model of prostaglandin I2 (PGI2) administration (inhaled vs. parenteral) and to assess the functional performance of the lungs in an ex vivo lung perfusion system. Methods: Forty Wistar rats were anesthetized and placed on mechanical ventilation followed by median sterno-laparotomy and anticoagulation. The main pulmonary artery was cannulated. All animals were maintained on mechanical ventilation and were randomized into four groups (10 rats/group): inhaled saline (IS); parenteral saline (PS); inhaled PGI2 (IPGI2); and parenteral PGI2 (PPGI2). The dose of PGI2 used in the IPGI2 and PPGI2 groups was 20 and 10 µg/kg, respectively. The heart-lung blocks were submitted to antegrade perfusion with a low potassium and dextran solution via the pulmonary artery, followed by en bloc extraction and storage at 4°C for 6 h. The heart-lung blocks were then ventilated and perfused in an ex vivo lung perfusion system for 50 min. Respiratory mechanics, hemodynamics, and gas exchange were assessed. Results: Mean pulmonary artery pressure following nebulization decreased in all groups (p < 0.001), with no significant differences among the groups. During the ex vivo perfusion, respiratory mechanics did not differ among the groups, although relative oxygenation capacity decreased significantly in the IS and PS groups (p = 0.04), whereas mean pulmonary artery pressure increased significantly in the IS group. Conclusions: The experimental model of inhaled PGI2 administration during lung extraction is feasible and reliable. During reperfusion, hemodynamics and gas exchange trended toward better performance with the use of PGI2 than that with the use of saline.

 


Keywords: Prostaglandins; Lung transplantation; Reperfusion; Models, animal; Rats.

 


Does methylene blue attenuate inflammation in nonischemic lungs after lung transplantation?

O azul de metileno atenua a inflamação em pulmões não isquêmicos após transplante pulmonar?

Marcus da Matta Abreu1,a, Francine Maria de Almeida1,b, Kelli Borges dos Santos2,c, Emílio Augusto Campos Pereira de Assis3,d, Rafael Kenji Fonseca Hamada4,e, Fabio Biscegli Jatene1,f, Paulo Manuel Pêgo-Fernandes1,g, Rogerio Pazetti1,h

J Bras Pneumol.2018;44(5):378-382

Abstract PDF PT PDF EN Portuguese Text

Objective: To evaluate whether methylene blue (MB) could minimize the effects of ischemia-reperfusion injury in the nonischemic lung on a lung transplantation rodent model. Methods: Forty female Sprague-Dawley rats were divided into 20 donors and 20 recipients. The 20 recipient rats were divided into two groups (n = 10) according to the treatment (0.9% saline vs. 1% MB solutions). All animals underwent unilateral lung transplantation. Recipients received 2 mL of saline or MB intraperitoneally prior to transplantation. After 2 h of reperfusion, the animals were euthanized and histopathological and immunohistochemical analyses were performed in the nonischemic lung. Results: There was a significant decrease in inflammation-neutrophil count and intercellular adhesion molecule-1 (ICAM-1) expression in lung parenchyma were higher in the saline group in comparison with the MB group-and in apoptosis-caspase-3 expression was higher in the saline group and Bcl-2 expression was higher in MB group. Conclusions: MB is an effective drug for the protection of nonischemic lungs against inflammation and apoptosis following unilateral lung transplantation in rats.

 


Keywords: Reperfusion injury; Methylene blue; Lung transplantation; Apoptosis; Inflammation.

 


Lodenafil treatment in the monocrotaline model of pulmonary hypertension in rats

Tratamento com lodenafila no modelo de hipertensão pulmonar induzida por monocrotalina em ratos

Igor Bastos Polonio, Milena Marques Pagliareli Acencio, Rogério Pazetti, Francine Maria de Almeida, Bárbara Soares da Silva, Karina Aparecida Bonifácio Pereira, Rogério Souza

J Bras Pneumol.2014;40(4):421-424

Abstract PDF PT PDF EN Portuguese Text

We assessed the effects of lodenafil on hemodynamics and inflammation in the rat model of monocrotaline-induced pulmonary hypertension (PH). Thirty male Sprague-Dawley rats were randomly divided into three groups: control; monocrotaline (experimental model); and lodenafil (experimental model followed by lodenafil treatment, p.o., 5 mg/kg daily for 28 days) Mean pulmonary artery pressure (mPAP) was obtained by right heart catheterization. We investigated right ventricular hypertrophy (RVH) and IL-1 levels in lung fragments. The number of cases of RVH was significantly higher in the monocrotaline group than in the lodenafil and control groups, as were mPAP and IL-1 levels. We conclude that lodenafil can prevent monocrotaline-induced PH, RVH, and inflammation.

 


Keywords: Hypertension, pulmonary; Monocrotaline; Interleukin-1.

 


 

 


The Brazilian Journal of Pulmonology is indexed in:

Latindex Lilacs SciELO PubMed ISI Scopus Copernicus pmc

Support

CNPq, Capes, Ministério da Educação, Ministério da Ciência e Tecnologia, Governo Federal, Brasil, País Rico é País sem Pobreza
Secretariat of the Brazilian Journal of Pulmonology
SCS Quadra 01, Bloco K, Salas 203/204 Ed. Denasa. CEP: 70.398-900 - Brasília - DF
Fone/fax: 0800 61 6218/ (55) (61) 3245 1030/ (55) (61) 3245 6218
E-mails: jbp@jbp.org.br
jpneumo@jornaldepneumologia.com.br

Copyright 2019 - Brazilian Thoracic Association

Logo GN1